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Abstract

We report progress towards developing a sensor module that categorizes

types of laughter for application in dialogue systems or social-skills train-

ing situations. The module will also function as a component to measure

discourse engagement in natural conversational speech. This paper presents

the results of an analysis into the sounds of human laughter in a very large

corpus of naturally-occurring conversational speech and our classification of

the laughter types according to social function. Various types of laughter

were categorized into either polite or genuinely mirthful categories and the

analysis of these laughs forms the core of this report. Statistical analysis

of the acoustic features of each laugh was performed and a principal compo-

nent analysis and classification tree analysis were performed to determine the

main contributing factors in each case. A statistical model was then trained
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using a support vector machine to predict the most likely category for each

laugh in both speaker-specific and speaker-independent manner. Better than

70% accuracy was obtained in automatic classification tests.

Keywords: Laughter, Prosody, Paralinguistic information, Non-verbal

behaviour, Classification, Support vector machines

1. Introduction

In human-human interaction, communication involves both verbal and

nonverbal information, and the latter serves especially to express discourse

engagement. One of the most common nonverbal vocalizations in social

conversation is laughter [1]. which is also reported as the most frequently

annotated acoustic nonverbal behavior in meeting corpora [2] where 8.6%

of the time a person vocalizes in a meeting is spent on laughing and 0.8%

is spent on laughing while talking. Laughter is a universal and prominent

feature of human communication [3], and expressed by both vocal and fa-

cial expressions. It is a powerful affective and social signal [4]. There is

no culture where laughter is not found. However, current dialogue systems

and computer-based social skills training (a training method for people with

autism or asperger syndrome to learn social function [5]) do not take into
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account laughter [6].

In a seminal study of the segmentation of laughs, Trouvain [7] suggests

that we consider laughter as articulated speech, where at the low level there

are sound segments that are either vowels or consonants. At the next higher

level, there are syllables consisting of sound segments. The next higher level

deals with larger units such as phrases which are made up of several syllables.

Owren [8] recommends the term‘ bout’for the longer sequence, and‘ call’

for the individual syllables; we will adopt that terminology in this study.

Some earlier work on the automatic segmentation of laughter has been

reported in the literature. Khiet P. Truong et al. [9] reported automatic

laughter segmentation in meetings. They performed laughter vs speech dis-

crimination experiments comparing traditional spectral features and acoustic

phonetic features, and concluded that the performance of laughter segmenta-

tion can be improved by incorporating phonetic knowledge into the models.

Scherer et al. [10] reported that the total accuracy of detecting laughter

from natural discourse in human-computer interaction reached over 90% in

online and offline detection experiments with speech and visual information.

Kennedy and Ellis [11] focused on joint laughter in meetings, which means

participants (more than just one) laugh simultaneously [12, 13, 14], and they
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obtained detection results with a correct accept rate of 87% and a false alarm

rate of 13% by using Support Vector Machines.

Types of laughter vary in natural conversational speech, and some classi-

fications have been reported in the literature regarding different categories of

laughter. Most types of laughter were discussed in [15], and the major work

is the discrimination of laughter into two types, voiced and unvoiced, based

on acoustics [16, 17]. Laurence et al. [18] deal with a study of laughs in

spontaneous speech and explore the positive and negative valence of laugh-

ter towards their global aim of detecting emotional behavior in speech. The

conclusion of their acoustic analysis is that unvoiced laughs are more often

perceived as negative and voiced segments as positive. Previous work in

the literature has also discussed whether laughter patterns can be defined

through stereotypes [19, 7, 20]. However, laughter is not simply positive or

negative, or even defined by stereotypes; it is quite usual for people to infer

different degrees of emotion and engagement based on its perceptions, and it

is common for people to make use of social laughter in sophisticated social

interaction. In this study we tested perceptual types of laughter to determine

the main characteristics of laughter in social interaction by reference to the

above previous studies.
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Automatic classification of four phonetic types of laughter in a natural-

speech conversation corpus was conducted by Campbell et al. [21], based

on perceptual impressions of laughter, in which a laughter episode is consid-

ered as a sequence of speech-like phonetic segments (after Bachorowski et al

[19]). The work described 4 different laughter types: voiced, chuckle, breathy

and nasal, and modeled each laugh as composed of different combinations of

these segments using Hidden Markov Models (HMMs) statistical classifica-

tion. The study reported an automatic discrimination using 3 to 15 states

with mfcc-based HMMs for 4 functions of laughter (hearty, amused, satirical,

and polite). In categorizing emotional classification the work achieved 76%

accuracy. However because of the hidden nature of the statistical model-

ing the report did not provide explicit details about which specific acoustic

features contributed to the various categorizations of the laughter.

We report progress towards developing a sensor module that categorizes

types of laughter for application in dialogue systems or social skills training

situations. In the present study we only make use of the audio information

but recognize that facial expression also carries an important channel of com-

municative information [22, 23]. This paper reports a study of laughs in a

corpus of human-human dialogues recorded from Japanese telephone conver-
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sational speech [24]. We employed a corpus of natural spontaneous speech

where laughter occurred naturally as a consequence of the dialogue interac-

tion. We specifically avoid the use of contrived laughter or even specifically

elicited laughs since they may not be representative of natural spontaneous

interaction.

In the following sections we first provide details of the corpus, then in-

troduce two Experiments. Experiment 1: a perceptual test by Japanese

students to determine the number and types of easily discriminated laugh-

ter, and Experiment 2: describing the acoustic feature extraction, presenting

the results of an analysis of the main acoustic features and finally reporting

a classification of type of laughter using statistical methods.

2. Data: Natural Types of Laughter

We used two types of Japanese corpora. First, the Expressive Speech

Processing (ESP) corpus [24] was used for this study. The speech data were

recorded over a period of several months, with paid volunteers coming to

an office building in a large city in Western Japan once a week to talk with

specific partners in a separate part of the same building over an office tele-

phone. While talking, they each wore a head-mounted Sennheiser HMD-410
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close-talking dynamic microphone and recorded their speech directly to DAT

(digital audio tape) at a sampling rate of 48kHz. They did not see their

partners or socialize with them outside of the recording sessions. Partner

combinations were controlled for sex, age, and familiarity, and all record-

ings were transcribed and time-aligned for subsequent analysis. Recordings

continued for a maximum of eleven sessions between each pair which were

numbered consecutively as session 01 to session 11. The additional eleventh

session was only used in the case of absence of one of the volunteers from one

of the regular sessions but provided useful additional material. Each con-

versation lasted for a period of thirty minutes. In all, ten people took part

as speakers in the recordings, five male and five female. Six were Japanese,

two Chinese, and two native speakers of American English. All were resi-

dent and working in Japan at the time. The speech data were transferred

to a computer and segmented into separate files, each containing a single

utterance for manual transcription by professional transcribers. Laughs were

marked with a special diacritic, and laughing speech was also bracketed to

show which sections of ordinary speech were spoken with a laughing voice.

Laughs were transcribed using the Japanese Katakana phonetic orthography,

wherever possible, alongside the use of the identifying symbol. The present
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analysis focuses on speakers JMA (age 20s) JMB (age 20s), EMA (age 20s),

EFA (age 20s), CMA (age 30s), and CFA (age 20s) to confirm that the same

types of laughter are common across different native language groups. The

other speakers are all female and similar to the speaker FAN in terms of

age, sex, and native language, and thus we selected one female speaker as

representative for the present analysis. JMC is omitted because his speech

data is insufficient. The initial letters J, C and E indicate native speaker

of Japanese, Chinese, and English respectively, M or F indicates the gender

of speaker, and A or B indicates the session group of speakers as used for a

different experiment.

Second, data from speaker FAN (age 30s) was also used in this report.

The FAN subset of the ESP corpus was recorded over a period of five years

with everyday conversational speech collected from a single female volunteer

wearing high-quality head-mounted microphones, recording her speech to a

small Mini-Disc recorder as she went about her daily life. This part of the

corpus features a lot of speech in various situations and much simple, repet-

itive and unstructured talk that illustrates how we spontaneously speak in

everyday situations. Speaker FAN was a young female Japanese who per-

sonally provided more than 600 hours of usable speech material. Because we
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were not able to enter into contractual agreements with her various interlocu-

tors, only the voice of FAN herself has been transcribed or analyzed. While

this material is less useful for the analysis of conversational interaction, it

provides valuable insights into the range of voice qualities and speaking styles

used by one person throughout her daily life.

The study reported here includes two perceptual experiments. The first

tested for perceptual types of laughter using Japanese students as subjects

listening to the natural conversational speech recordings. We used these

results to confirm the classification into the most easily perceived classes of

laughter in the corpus. The second tested the degree to which opinions were

shared between respondents in the initial classification. For both experiments

we predicted the following:

1. In social communication, people do not use hearty laughter with high

frequency, rather they typically express polite social laughter (Experi-

ment 1);

2. There are some important acoustic features that can be used to dis-

tinctively classify the types of laughter; these includes laughter specific

parameters such as the number of the calls; and

3. Automatic classification of laughter is possible at rates greater than
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chance in both closed and open tests (Experiment 2).

3. Experiment 1

This experiment concerned the annotation of types of laughter found in

the ESP corpus and we chose conversations between JMA and JMB, and

JMA and EFA as illustrative.

3.1. Method

We recruited 20 Japanese students (age 23 to 26), and they downloaded

wav files from three of the thirty-minute sessions (JMA-EFA; session 03,

JMA-JMB; session 03, and JMA-JMB; session 11). Male speaker JMA is the

common factor here, and we noticed that his utterance and laughter would

change depending on the partner information and the number of sessions

(i.e., ‘familiarity’) [25, 26]. Annotators were free to select one from the list

of three conversations for annotation, and were required to categorize both

JMA ’s and partner ’s laughter. 8 students choose JMA-EFA; session 03,

6 students choose JMA-JMB; session 03, and 6 students choose JMA-JMB;

session 11.

We determined types of laugher by reference to previous work [21, 27],

as ‘mirthful’, ‘polite’, ‘derisive’, and ‘others’ because this research utilises
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spontaneous speech data, and thus derisive laughter is sometimes included

in the corpus [28]. Because hearty laugh and amused laugh in [21] were some-

times difficult to distinguish, these were both included under the category of

mirthful laughter. The ESP corpus has been richly transcribed and subjects

worked from phonetic laughter transcriptions such as ’hahaha’, ’hihihi’, or

’huhuhu’.

The instruction page for the annotation exercise was created in html

and students carried out annotations following these instruction in their own

space, either at home or in the laboratory. The resulting annotation was sent

to the first and second author by E-mail.

3.2. Result: Main Types of Laughter

The 20 annotator agreement was measured by Multi Cohen’s kappa-

coefficient which calculates agreement beyond chance by distinguishing the

observed agreement (Aobs) from the agreement by chance (Ach), according to

the following:

κ = (Aobs − Ach) / (1 − Ach) (1)

We implemented pair-wise kappa for all annotator pairs, and obtained

a kappa value 0.46, which corresponds to moderate agreement according
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to the scale proposed by [29]. It must be noted that low kappa scores do

not necessarily mean low agreement [30]: if the annotators share certain

assumptions of the data, their chance agreement is higher, and the above

formula gives smaller kappa values.

As a result, we found that mirthful and polite laughs account for 90 per-

cent of all laughs in these samples of human social interaction and only a very

small number of derisive laughs were heard. Approximately 8% of the time

when a person vocalizes in natural dialogue is spent on laughing (ref. Table

1). The table shows counts of labels both for laughs and laughing speech,

though we omit any results for laughing speech from this study because of

its linguistic complexity.

<Table 1 around here>

Experiment 1 was carried out to determine which types of laughter were

most readily perceived by typical Japanese students, and we confirmed hy-

pothesis 1; In social communication, people do not use hearty laughter with

high frequency, rather they typically express polite social laughter. Since

people with autism perceive polite laughter as mirthful laughter [31], a sen-

sor module which classifies polite laughs is considered beneficial for social

skills training situations. Our research is directed to this goal.
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The main types of laughter in these recordings were determined to be

polite and mirthful (accounting for 90% of the laughs), and the number of

other types of laughter is too small to be integrated into a sensor module

reflecting social functions. Thus we take the majority vote of the observers,

and categorized two basic types: mirthful laughs henceforth labeled ‘m’ and

polite laughs labeled ‘p’ for use in Experiment 2.

4. Experiment 2

This experiment concerned an analysis of the acoustic parameters of the

two types of laughter we defined above, and was implemented in classification

of natural laughs by using Support Vector Machines, a widely-used high-

performance statistical classifier.

4.1. Segmentation and Annotation

In Experiment 1 we determined two types of laughter that are common

in Japanese social conversation, polite and mirthful. Experiment 2 utilized

this result and two small classes (derisive and others) are removed because

these is not enough data to use. We explored the variation as the number

of speakers was increased. Table 2 shows the number of laughs used for this

Experiment. For the analysis of acoustic features we used speakers JMA,
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JMB, and FAN, and for the test of cross-prediction by Support Vector Ma-

chine the speakers JMB, FAN, EMA, EFA, CMA, and CFA were selected to

evaluate the generalization ability of the classifier.

The choice of partner is important in classifying these two types of laugh-

ter; in this report the frequent speakers, JMA and JFA, who talk with almost

all others were chosen. Thus, we select the following sessions; CMA-JFA,

EFA-JFA, EMA-JFA, JMA-JFA, CFA-JMA, CMA-JMA, EFA-JMA, EMA-

JMA, and JMB-JMA. The ESP corpus has rich transcription of all utterances

and laughter segmentation was performed using linguistic label time-stamp

information. An annotator manually labelled each laugh thus excised into

either polite or mirthful categories according to the results obtained from

Experiment 1.

<Table 2 around here>

4.2. Acoustic Feature Extraction

<Table 3 around here>

The prosodic acoustic features for each laugh were calculated by a soft-

ware programme we wrote using the Snack speech processing Toolkit, part

of the Tcl/Tk programming language [32]. Explicit prosodic features were

included for analysis in this report because our earlier work had used mfcc
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parameters only. Overall classification accuracy from the mfcc alone is less

than that obtained when using higher-level prosodic features such as F0,

amplitude, duration, and their derivatives. In addition to these fundamen-

tal prosodic parameters, spectral tilt or shape parameters and positional

parameters (fvcd, ppct, and fpct) were estimated to facilitate voice quality

descriptions and to encode the acoustic dynamics of the laughter.

The features we tested were measures of fundamental frequency, speech

amplitude, and spectral tilt. For fundamental frequency and power, we calcu-

lated the mean, maximum, and minimum values measured across each laugh

(fmean, fmax, fmin, pmean, pmax, and pmin), as well as the position of the

maximum in relative percentage values within each speech waveform (fpct,

and ppct). We estimated spectral tilt from the difference between the first

harmonic and the amplitude of the third formant (h1a3) after Hansen [33],

and by the difference between the first harmonic and the second harmonic

(h1h2), as well as taking into account the amplitude of first harmonic (h1)

and third formant (a3) respectively. We also measured duration of the laugh

(dn) as well as the amount of voicing it contained (fvcd).

We extracted ‘No.Call’ (The number of calls in a bout) as a further feature

for our analysis. The call unit segmentation is implemented by use of an mfcc
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3-state Hidden Markov Model with, which achieved over 87% accuracy for

each of the four call types within a bout (voiced, ingressive, chuckle, and

nasal) as reported in [34]. We calculated the correlation coefficient between

duration and No.calls of JMA and obtained a correlation of 0.91 (p < 0.001

(signif)). Although highly correlated we consider the number of calls to be

a relevant parameter in our modeling as it may distinguish between many

short calls and few longer ones each having the same overall bout duration.

Actually, approximately 1 % of accuracy rate is changed according to the

inclusion each of these features against each speaker in our pilot experiment.

Two further dynamic parameters ‘F0moveAB’ and ‘F0moveAN’ were also

extracted. As Figure 1 shows, these parameters need F0avg2a which repre-

sents average logarithm of pitch within a first (A) call, and F0tgt2b (Second

(B) call) and F0tgt2n (Final (N) call) which represents the pitch target at

the end of each call by a simple regression coefficient. Pitch change between

the first and the second call (F0moveAB) is calculated F0avg2a − F0tgt2b,

and that between the first and the final call (F0moveAN) is also calculated

F0avg2a − F0tgt2n. When there is one call within a bout, we set these

dynamic parameters to zero.

<Figure 1 around here>
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4.3. Statistical Analysis Tool

This section reports a statistical analysis of human laughter which was

annotated as either polite or mirthful, using parameter reduction by means

of Principal Component Analysis and Classification Trees. An automatic

classification of the two types of laughter is reported in this section. The

statistical analyses were performed using the free public-domain software

package R [35]. Specifically, we used the additional option package ‘tree’

for Classification Tree and package ‘e1071’ for the Support Vector Machine

analysis.

4.4. Principal Component Analysis

We split the data into training and test set (JMA; training: 206, test: 61,

JMB; training: 191, test: 71, FAN; training: 270, test: 61), and the number

of label ‘p’ and ‘m’ are balanced in each set. We ensure that the test material

does not appear anywhere except in a validation experiment.

Figures 2 and 3 show plots of the two types of laughter in terms of each

acoustic representation for all data of the speaker JMA. From these plots

we infer that type of laughter can be readily characterized by use of these

acoustic features and will show the extent to which this can be achieved.

Figure 2 shows first 8 parameters of JMA, and for example that ‘p’ (polite)
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is characterized by relatively low maximum power, and that ‘m’ (mirthful)

is characterized by relatively high maximum power. Most laughs are in the

region of high maximum power and there is considerable spread of laugh

categories across the whole of fmean-pmax dimensional feature space. Fig-

ure 3 shows last 8 parameters and note that ‘p’ (polite) is characterized by

relatively high h1a3 value, which is a spectral tilt parameter representing

differences in voice quality, and ‘m’ (mirthful) is characterized by relatively

high duration and high No. calls. Since the data from speakerJMB and FAN

show almost the same distribution as that of speaker JMA, their figures are

omitted here (no individuals difference were found).

<Figure 2 around here>

<Figure 3 around here>

Principal Component Analysis (PCA) was used for analyzing and maxi-

mizing the combination of acoustic features across the speakers. The result

from speakerJMB and FAN show almost the same as that of speaker JMA,

and thus we report the PCA result for training data of the subject JMA.

The proportion of variance from the first component to the fifth component

(cumulative proportion of variance up to 70%) from a PCA rotation of these

acoustic features shows that each component’s contribution ratio is not indi-
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vidually high, even for the first component, for all speakers. Table 4 shows

the result of JMA’s factor loadings. It reveals that the first principal com-

ponent is largely related to fundamental frequency and No.call, the second

to power, the third to spectral slope, and the fourth to F0moveAB.

<Table 4 around here>

4.5. Classification Trees

Classification Trees are a very useful tool for confirming finer details of

contributing factors within the three parameters of fundamental frequency

and power, min, max, and mean, that emerged from the principal component

analysis.

We employed both Classification Trees and Support Vector Machines in

our modeling; the former being relatively weak at classification but very

useful for examining the contribution of the individual factors, and the latter

being perhaps the strongest statistical classifier available for general use.

Figures 4 shows the results of growing and pruning a classification tree

having 10 leaves for speaker JMA. Detailed formation of each tree differs ac-

cording to speaker, but the important acoustic parameters are similar. These

can be used to classify laughs according to a cascade of IF-THEN rules, giv-

ing total accuracy of 77% (JMA), 74% (JMB), and 90% (FAN) respectively.
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Classification tree accuracies were measured for each test dataset. By ob-

serving the upper part of the tree, fmean, pmax, ppct, and dn (duration),

the principal contributing features used to classify the two types of laughs

can be determined.

<Figure 4 around here>

4.6. Both Speaker-dependent and Speaker-independent Classification by Sup-

port Vector Machine

Support Vector Machines are high-performance statistical classifiers. The

SVM Type is C-classification, and kernel type is linear. Other system pa-

rameters are set to cost: 1, and gamma: 0.0625. The result of automatic

discrimination using 15-fold closed (i.e., train and test on the same speaker)

cross validation for JMA’s mirthful (m) and polite (p) laughs we obtained

85% total accuracy. Training a Support Vector Machine on the same data

gives a much more successful result, since it employs a total of 84 Support

Vectors to predict the data, rather than the 10 terminal nodes determined

by the Classification Trees. For JMB and FAN the same classification is

implemented and total accuracy is 80% (JMB) and 92% (FAN). We split the

data into training and test sets. The result of automatic discrimination on

the test set for mirthful (m) and polite (p) laughs shows that we obtained
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JMA; 75% (F-measure = 0.76), JMB; 87% (F-measure = 0.88), FAN; 84%

(F-measure = 0.84) respectively.

In the speaker-independent classification, we trained with JMA (using

training set) and tested with JMB and FAN (using test set). Two speaker’s

classification rates are JMB: 90% and FAN: 67% respectively. Good cat-

egorization was possible for JMB, however for FAN, classification rates is

relatively low. It is probably caused by overfitting due to high dimensional

acoustic parameters and thus we try to implement parameter reduction.

4.7. Parameter Reduction

Having a large number of predictor features usually results in better clas-

sification accuracy, but often at the cost of generalizability. Accordingly, we

performed a Principal Component Analysis and used Classification trees to

reduce the number of features used in the final model. As we mostly inspect

the Table 4 and Figure 4, the important features were selected. the optimal

combination of features was chosen from the first or second principal com-

ponents, and from those featuring most commonly in the upper part of the

Classification trees. We were able to confirm the usefulness of seven impor-

tant acoustic features; fmean (or fmax), pmax, ppct, h1a3, duration, No.call,

and F0moveAB. The other parameters were omitted from the set of acoustic
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features used for the final training of the Support Vector Machines.

4.8. Classification by Support Vector Machine post Parameter Reduction

Following the above parameter reduction, we used a Support Vector Ma-

chine to predict the most likely category for each laugh token from its acous-

tics. The result of automatic discrimination using 15-fold cross validation for

JMA’s mirthful (m) and polite (p) laughs we obtained 86% total accuracy.

For JMB and FAN the same classification is implemented and total accu-

racy is 86% (JMB) and 89% (FAN). It shows relatively high accuracies for

each speaker compared to pre parameter reduction. The result of automatic

discrimination using the test dataset for mirthful (m) and polite (p) laughs

we obtained JMA; 79% (F-measure = 0.78), JMB; 89% (F-measure = 0.89),

FAN; 79% (F-measure = 0.81) respectively.

4.9. Cross Prediction (speaker-independent) post Parameter Reduction

Table 5 shows the results of an open test across speakers, JMB, FAN,

EMA, EFA, CMA, and CFA (mixing different native language and gender

groups), training with JMA and testing with the others. All speaker’s clas-

sification rates are over 70% (JMB: 85%, FAN: 74%, EMA: 93%, EFA: 79%,

CMA: 86%, CFA: 86%). Good categorization was possible for each speaker
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by using the seven acoustic features described above. However, difference

in speaker-independent results before and after parameter reduction is not

statistically significant. Therefore, we conclude that feature reduction could

not actually help to significantly improve results.

We performed an error analysis for these SVM results restricted to po-

lite tokens of two speakers, EMA (English male speaker) and CFA (Chinese

female speaker) who represent difference of both gender, native languages,

and age. A Student’s t-test was conducted for each of the seven acoustic

parameters. As a result, we found that pmax parameter differs between true

(same test and training sample) polite laughter and error (false prediction or

difference between test and training sample). According to this test, EMA’s

mean pmax “error” polite laughter: 54.99, “true” polite laughter”: 71,56,

p=7.11e-08 (signif) and CFA’s mean pmax “error” polite laughter: 45.99,

“true” polite laughter: 60.40, p=1.62e-05 (signif). This may be due to mi-

crophone impact noise since the power parameter was not normalized in the

extraction process.

<Table 5 around here>
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5. Discussion

This study evaluated classification of natural laughter for engagement

sensing in natural speech data. In Experiment 1 we observed several types

of laughs (mirthful, polite, derisive, and others) in a natural speech corpus,

and two predominant types of laughter (polite vs. mirthful) were defined

and categorized from a manual examination of the data and by perceptual

labeling carried out by 20 Japanese subjects. In social communication (for

Japanese at least, but probably more generally), people do not use hearty

laughter with the same frequency that they utter polite laughs. We found

that human laughter includes various laughs in conflict with stereotyped

laughter [36], and we found many instances of the various types of laughter

in our spontaneous Japanese speech.

This study reported an analysis of the acoustic features of these laughs.

Global prosodic and laughter-specific acoustic features were extracted for the

two types of laughter. These parameters were analyzed by Principal Com-

ponent Analysis and Classification Trees to reduce the number of parame-

ters. As a result of the analysis, we confirmed seven contributing acoustic

features; mean value of fundamental frequency (fmean), maximum value of

power (pmax), the position of the power maximum in relative percentage val-
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ues (ppct), the difference between the first harmonic and the third formant

(h1a3), duration of the laugh (dn), The number of calls in a bout (No call),

and Pitch change between the first and the second call (F0moveAB). For

both parameter plots and statistical analysis we found a difference between

the two main types of laughter.

A Support Vector Machine was trained and tested using these seven fea-

tures, and total classification accuracy was confirmed to be at least 85%

with cross validation for speaker JMA. As a result of statistical analysis we

reduced the number of parameters to seven dimensions. By observing the

output of a principal component analysis and by use of classification trees

some strong predictor parameters were chosen. After parameter reduction,

open speaker tests across different discourse modes achieved approximately

70%.

We found certain individual differences and some strong similarities be-

tween people and tested both open and closed prediction methods. By re-

ducing the number of parameters and using only the strongest and most

general predictors we were able to obtain good results on cross-prediction

tests for variety of speakers (cross-culture and personality). However, in case

of EFA, her accuracy was low compared to other speakers in ESP corpus. She
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seemed to be nervous during recording and thus she often laughs in a state

of embarrassment that is difficult to classify into polite or mirthful laughs.

Furthermore, speaker FAN data was recorded in various very different condi-

tions as we mentioned in the introduction. That we can predict the type of

laughter for her speech, when training on more constrained examples, indi-

cates that this parameter reduction achieved high accuracy and allows high

generalisation.

The present study justifies our belief that prosodic parameters are suffi-

ciently and statistically different in the two types of laughter and that Ma-

chine learning can classify them efficiently. Scherer et al. [10] reported that

the total accuracy of segmentation of laughter from natural discourse can be

over 90%. This laughter detection is currently being integrated into a device

to help people with autism spectrum disorders [31], who have difficulties un-

derstanding certain types of social functions. Finally we developed a Tcl/Tk

based tool reflecting the result of these analyses. When the user speaks (in

our present testing, usually acted laughs) into the microphone, and presses

the analysis button, the system automatically displays the type of laugh-

ter (polite vs. mirthful) with an accompanying facial expression given by

computer graphics. Support Vector Machine are used for classification pro-
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cess. This tool might help train people with autism spectrum conditions to

recognize human engagement in future. This is to be carried out as future

work.
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List of Tables

Table 1: An example of counts of four types of laughs (mirthful, polite,

derisive, and others) and non-laughs in a representative thirty minute con-

versation between two males (JMA and JMB). We found that mirthful and

polite laughs account for 90 percent of all laughs in this social interaction

and only a very small number of derisive laughs were heard.

Table 2: Showing the number of laughs in each category.

Table 3: Extracted acoustic features. The prosodic acoustic features for

each laugh were calculated using the Snack speech processing Toolkit.

Table 4: Factor Loadings of Principal Component Analysis. This reveals

that the first principal component is largely related to fundamental frequency

and No.call, the second to power, the third to spectral slope, and the fourth

to our measure of prosodic activity F0moveAB.

Table 5: An open test across speakers, JMB, FAN, EMA, EFA, CMA,

and CFA, training with JMA and testing with the others. Each speaker’s

classification rates are over approximately 70%. The rows are true classes

and the columns show predicted classes.
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List of Figures

Figure 1: Log pitch contour and extracting method of two dynamic

parameters F0moveAB and F0moveAN. These parameters need F0avg2a

which represents average logarithm of pitch within a first (A) call, and

F0tgt2b (Second (B) call) and F0tgt2n (Final (N) call) which represents

the pitch target mark at the end of each call by a simple regression coef-

ficient. Pitch change between the first and the second call (F0moveAB) is

calculated F0avg2a − F0tgt2b, and that between the first and the final call

(F0moveAN) is calculated F0avg2a − F0tgt2n.

Figure 2: Showing first 8 parameters. JMA shows for example that ‘p’

(polite) is characterized by relatively low maximum power, and that ‘m’

(mirthful) is characterized by relatively high maximum power. Most laughs

are in the region of high maximum power and there is considerable spread of

laugh categories across the fmean-pmax dimensional feature space.

Figure 3: JMA shows a different distribution of categories across the

different last 8 feature space which indicates that ‘p’ (polite) is characterized

by relatively high h1a3 value, which is spectral tilt parameter correlated to

voice quality, and ‘m’ (mirthful) is characterized by relatively high duration

and high No. calls.
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Figure 4: The Classification Tree for predicting laughs from JMA - with

10 leaves, using a different set of parameters and parameter ordering from

that determined for JMA, starting from fmean, then taking into account dn

(duration) and pmax (maximum power).
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Tables

Table 1:

type count prop. cumulative prop.

non-laughs 6999 none none

polite 579 66% 66%

mirthful 244 28% 94%

derisive 49 5% 99%

others 4 1% 100%

Table 2:

JMA JMB FAN EMA EFA CMA CFA

mirthful 129 127 196 5 44 57 5

polite 138 135 136 65 22 13 60
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Table 3:

Features Explanation

fmean mean value of fundamental frequency

fmax maximum value of fundamental frequency

fmin minimum value of fundamental frequency

fpct the position of the f0 maximum in relative percentage values

pmean mean value of power

pmax maximum value of power

pmin minimum value of power

ppct the position of the power maximum in relative percentage values

h1h2 the difference between the first harmonic and the second harmonic

h1a3 the difference between the first harmonic and the third formant

h1 the amplitude of first harmonic

a3 the amplitude of third formant

fvcd the amount of voicing it contained

duration duration of the laugh
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Table 4:

Loadings:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

fmean 0.406 -0.139 -0.360

fmax 0.426 -0.149

fmin 0.128 0.199 0.183 -0.249 -0.548

fpct 0.122 0.345

pmean -0.507

pmax 0.223 -0.430

pmin -0.484 -0.180

ppct -0.221 0.353 0.104 -0.184

h1h2 -0.258 -0.391 -0.158

h1a3 -0.312 -0.426 -0.154

h1 -0.287 -0.276 -0.312 -0.312

a3 -0.369 0.179 0.149 -0.184

fvcd -0.202 0.167 0.494

dn 0.355 -0.411 0.113

No.call 0.355 -0.382 0.106 0.148

F0moveAB -0.620

F0moveAN -0.111 -0.580 0.177
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Table 5:

JMB mirthful polite EMA mirthful polite CMA mirthful polite

mirthful 36 5 mirthful 4 1 mirthful 52 5

polite 6 24 polite 4 61 polite 5 8

FAN mirthful polite EFA mirthful polite CFA mirthful polite

mirthful 29 1 mirthful 43 1 mirthful 3 2

polite 15 16 polite 13 9 polite 7 53
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